MICROPROCESADOR

ÍNDICE:
1.    DEFINICIÓN
2.    HISTORIA
3.    ARQUITECTURA
4.    DIVISIÓN INTERNA (ALU Y UNIDAD DE CONTROL)
5.    DEFINICIÓN CPU, GPU, Y VPU
6.    DISIPADOR Y VENTILADOR
7.    MARCAS Y MODELOS DE LOS MICROPROCESADORES
8.    CONEXIÓN EXTERIOR
9.    CÓMO CREAR UN PROCESADOR
10.  MEMORIA CACHE L1, L2 Y L3
11.  MICROPROCESADORES MULTICORE O PROCESADORES VARIOS NÚCLEOS
12.  PROCESADORES DE 48 NÚCLEOS
13.  EL OVERCLOCKING EN LOS MICROPROCESADORES
14.  EL “FRONTAL SIDE BUS (FSB)
15.  CREAR EL PRIMER MICROPROCESADOR ORGÁNICO Y FLEXIBLE




1. DEFINICIÓN DE MICROPROCESADOR.

El microprocesador (o simplemente procesador) es el circuito integrado central y más complejo de un sistema informático; a modo de ilustración, se le suele asociar por analogía como el «cerebro» de un computador. Es un circuito integrado constituido por millones de componentes electrónicos. Constituye la unidad central de procesamiento (CPU) de un PC catalogado como microcomputador.
Es el encargado de ejecutar los programas; desde el sistema operativo hasta las aplicaciones de usuario; sólo ejecuta instrucciones programadas en lenguaje de bajo nivel, realizando operaciones aritméticas y lógicas simples, tales como sumar, restar, multiplicar, dividir, las lógicas binarias y accesos a memoria.
Esta unidad central de procesamiento está constituida, esencialmente, por registros, una unidad de control, una unidad aritmético lógica (ALU) y una unidad de cálculo en coma flotante (conocida antiguamente como «co-procesador matemático»).
El microprocesador está conectado, generalmente, mediante un zócalo específico a la placa base de la computadora. Normalmente, para su correcto y estable funcionamiento, se le adosa un sistema de refrigeración, que consta de un disipador de calor fabricado en algún material de alta conductividad térmica, como cobre o aluminio, y de uno o más ventiladores que fuerzan la expulsión del calor absorbido por el disipador; entre éste último y la cápsula del microprocesador suele colocarse pasta térmica para mejorar la conductividad térmica. Existen otros métodos más eficaces, como la refrigeración líquida o el uso de células peltier para refrigeración extrema, aunque estas técnicas se utilizan casi exclusivamente para aplicaciones especiales, tales como en las prácticas de overclocking.
La medición del rendimiento de un microprocesador es una tarea compleja, dado que existen diferentes tipos de "cargas" que pueden ser procesadas con diferente efectividad por procesadores de la misma gama. Una métrica del rendimiento es la frecuencia de reloj que permite comparar procesadores con núcleos de la misma familia, siendo este un indicador muy limitado dada la gran variedad de diseños con los cuales se comercializan los procesadores de una misma marca y referencia.
Volver a PARTES DE UN PC  o a ÍNDICE



2. HISTORIA.

Hasta los primeros años de la década de 1970 los diferentes componentes electrónicos que formaban un procesador no podían ser un único circuito integrado, era necesario utilizar dos o tres "chips" para hacer una CPU (un era el "ALU" - Arithmetical Logic Unido, el otro la " control Unido", el otro el " Register Bank", etc ..). En 1971 la compañía Intel consiguió por primera vez poner todos los transistores que constituían un procesador sobre un único circuito integrado, el"4004 "', nacía el microprocesador.
Seguidamente se expone una lista ordenada cronológicamente de los microprocesadores más populares que fueron surgiendo.

1971: El Intel 4004
El 4004 fue el primer microprocesador del mundo, creado en un simple chip, y desarrollado por Intel. Era un CPU de 4 bits y también fue el primero disponible comercialmente. Este desarrollo impulsó la calculadora de Busicom y dio camino a la manera para dotar de «inteligencia» a objetos inanimados, así como la computadora personal.


1972: El Intel 8008
Codificado inicialmente como 1201, fue pedido a Intel por Computer Terminal Corporation para usarlo en su terminal programable Datapoint 2200, pero debido a que Intel terminó el proyecto tarde y a que no cumplía con las expectativas de Computer Terminal Corporation, finalmente no fue usado en el Datapoint. Posteriormente Computer Terminal Corporation e Intel acordaron que el i8008 pudiera ser vendido a otros clientes.

1974: El SC/MP
El SC/MP desarrollado por National Semiconductor, fue uno de los primeros microprocesadores, y estuvo disponible desde principio de 1974. El nombre SC/MP (popularmente conocido como «Scamp») es el acrónimo de Simple Cost-effective Micro Processor (Microprocesador simple y rentable). Presenta un bus de direcciones de 16 bits y un bus de datos de 8 bits. Una característica, avanzada para su tiempo, es la capacidad de liberar los buses a fin de que puedan ser compartidos por varios procesadores. Este microprocesador fue muy utilizado, por su bajo costo, y provisto en kits, para propósitos educativos, de investigación y para el desarrollo de controladores industriales diversos.

1974: El Intel 8080
EL 8080 se convirtió en la CPU de la primera computadora personal, la Altair 8800 de MITS, según se alega, nombrada en base a un destino de la Nave Espacial «Starship» del programa de televisión Viaje a las Estrellas, y el IMSAI 8080, formando la base para las máquinas que ejecutaban el sistema operativo CP/M-80. Los fanáticos de las computadoras podían comprar un equipo Altair por un precio (en aquel momento) de u$s395. En un periodo de pocos meses, se vendieron decenas de miles de estas PC.

1975: Motorola 6800
Se fabrica, por parte de Motorola, el Motorola MC6800, más conocido como 6800. Fue lanzado al mercado poco después del Intel 8080. Su nombre proviene de que contenía aproximadamente 6800 transistores. Varios de los primeras microcomputadoras de los años 1970 usaron el 6800 como procesador. Entre ellas se encuentran la SWTPC 6800, que fue la primera en usarlo, y la muy conocida Altair 680. Este microprocesador se utilizó profusamente como parte de un kit para el desarrollo de sistemas controladores en la industria. Partiendo del 6800 se crearon varios procesadores derivados, siendo uno de los más potentes el Motorola 6809.


1976: El Z80
La compañía Zilog Inc. crea el Zilog Z80. Es un microprocesador de 8 bits construido en tecnología NMOS, y fue basado en el Intel 8080. Básicamente es una ampliación de éste, con lo que admite todas sus instrucciones. Un año después sale al mercado el primer computador que hace uso del Z80, el Tandy TRS-80 Model 1 provisto de un Z80 a 1,77 MHz y 4 KB de RAM. Es uno de los procesadores de más éxito del mercado, del cual se han producido numerosas versiones clónicas, y sigue siendo usado de forma extensiva en la actualidad en multitud de sistemas embebidos. La compañía Zilog fue fundada 1974 por Federico Faggin, quien fue diseñador jefe del microprocesador Intel 4004 y posteriormente del Intel 8080.


1978: Los Intel 8086 y 8088
Una venta realizada por Intel a la nueva división de computadoras personales de IBM, hizo que las PC de IBM dieran un gran golpe comercial con el nuevo producto con el 8088, el llamado IBM PC. El éxito del 8088 propulsó a Intel a la lista de las 500 mejores compañías, en la prestigiosa revista Fortune, y la misma nombró la empresa como uno de Los triunfos comerciales de los sesenta.

1982: El Intel 80286
El 80286, popularmente conocido como 286, fue el primer procesador de Intel que podría ejecutar todo el software escrito para su predecesor. Esta compatibilidad del software sigue siendo un sello de la familia de microprocesadores de Intel. Luego de 6 años de su introducción, había un estimado de 15 millones de PC basadas en el 286, instaladas alrededor del mundo.

1985: El Intel 80386
Este procesador Intel, popularmente llamado 386, se integró con 275000 transistores, más de 100 veces tantos como en el original 4004. El 386 añadió una arquitectura de 32 bits, con capacidad para multitarea y una unidad de traslación de páginas, lo que hizo mucho más sencillo implementar sistemas operativos que usaran memoria virtual.

1985: El VAX 78032
El microprocesador VAX 78032 (también conocido como DC333), es de único chip y de 32 bits, y fue desarrollado y fabricado por Digital Equipment Corporation (DEC); instalado en los equipos MicroVAX II, en conjunto con su ship coprocesador de coma flotante separado, el 78132, tenían una potencia cercana al 90% de la que podía entregar el minicomputador VAX 11/780 que fuera presentado en 1977. Este microprocesador contenía 125000 transistores, fue fabricado en tecnologóa ZMOS de DEC. Los sistemas VAX y los basados en este procesador fueron los preferidos por la comunidad científica y de ingeniería durante la década del 1980.

1989: El Intel 80486
La generación 486 realmente significó contar con una computadora personal de prestaciones avanzadas, entre ellas,un conjunto de instrucciones optimizado, una unidad de coma flotante o FPU, una unidad de interfaz de bus mejorada y una memoria caché unificada, todo ello integrado en el propio chip del microprocesador. Estas mejoras hicieron que los i486 fueran el doble de rápidos que el par i386 - i387 operando a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático o FPU integrado; con él que se aceleraron notablemente las operaciones de cálculo. Usando una unidad FPU las operaciones matemáticas más complejas son realizadas por el coprocesador de manera prácticamente independiente a la función del procesador principal.


1991: El AMD AMx86
Procesadores fabricados por AMD 100% compatible con los códigos de Intel de ese momento, llamados «clones» de Intel, llegaron incluso a superar la frecuencia de reloj de los procesadores de Intel y a precios significativamente menores. Aquí se incluyen las series Am286, Am386, Am486 y Am586.

1993: PowerPC 601
Es un procesador de tecnología RISC de 32 bits, en 50 y 66MHz. En su diseño utilizaron la interfaz de bus del Motorola 88110. En 1991, IBM busca una alianza con Apple y Motorola para impulsar la creación de este microprocesador, surge la alianza AIM (Apple, IBM y Motorola) cuyo objetivo fue quitar el dominio que Microsoft e Intel tenían en sistemas basados en los 80386 y 80486. PowerPC (abreviada PPC o MPC) es el nombre original de la familia de procesadores de arquitectura de tipo RISC, que fue desarrollada por la alinza AIM. Los procesadores de esta familia son utilizados principalmente en computadores Macintosh de Apple Computer y su alto rendimiento se debe fuertemente a su arquitectura tipo RISC.


1993: El Intel Pentium
El microprocesador de Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez, gracias a sus dos pipeline de datos de 32bits cada uno, uno equivalente al 486DX(u) y el otro equivalente a 486SX(u). Además, estaba dotado de un bus de datos de 64 bits, y permitía un acceso a memoria de 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas, y los registros también eran de 32 bits). Las versiones que incluían instrucciones MMX no sólo brindaban al usuario un más eficiente manejo de aplicaciones multimedia, como por ejemplo, la lectura de películas en DVD, sino que también se ofrecían en velocidades de hasta 233 MHz. Se incluyó una versión de 200 MHz y la más básica trabajaba a alrededor de 166 MHz de frecuencia de reloj. El nombre Pentium, se mencionó en las historietas y en charlas de la televisión a diario, en realidad se volvió una palabra muy popular poco después de su introducción.

1994: EL PowerPC 620
En este año IBM y Motorola desarrollan el primer prototipo del procesador PowerPC de 64 bit [2], la implementación más avanzada de la arquitectura PowerPC, que estuvo disponible al año próximo. El 620 fue diseñado para su utilización en servidores, y especialmente optimizado para usarlo en configuraciones de cuatro y hasta ocho procesadores en servidores de aplicaciones de base de datos y vídeo. Este procesador incorpora siete millones de transistores y corre a 133 MHz. Es ofrecido como un puente de migración para aquellos usuarios que quieren utilizar aplicaciones de 64 bits, sin tener que renunciar a ejecutar aplicaciones de 32 bits.

1995: EL Intel Pentium Pro
Lanzado al mercado para el otoño de 1995, el procesador Pentium Pro (profesional) se diseñó con una arquitectura de 32 bits. Se usó en servidores y los programas y aplicaciones para estaciones de trabajo (de redes) impulsaron rápidamente su integración en las computadoras. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo era más lento que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits. El procesador Pentium Pro estaba compuesto por alrededor de 5,5 millones de transistores.

1996: El AMD K5
Habiendo abandonado los clones, AMD fabricada con tecnologías análogas a Intel. AMD sacó al mercado su primer procesador propio, el K5, rival del Pentium. La arquitectura RISC86 del AMD K5 era más semejante a la arquitectura del Intel Pentium Pro que a la del Pentium. El K5 es internamente un procesador RISC con una Unidad x86- decodificadora, transforma todos los comandos x86 (de la aplicación en curso) en comandos RISC. Este principio se usa hasta hoy en todas las CPU x86. En la mayoría de los aspectos era superior el K5 al Pentium, incluso de inferior precio, sin embargo AMD tenía poca experiencia en el desarrollo de microprocesadores y los diferentes hitos de producción marcados se fueron superando con poco éxito, se retrasó 1 año de su salida al mercado, a razón de ello sus frecuencias de trabajo eran inferiores a las de la competencia, y por tanto, los fabricantes de PC dieron por sentado que era inferior.

1996: Los AMD K6 y AMD K6-2
Con el K6, AMD no sólo consiguió hacerle seriamente la competencia a los Pentium MMX de Intel, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador casi a la altura del Pentium II pero por un precio muy inferior. En cálculos en coma flotante, el K6 también quedó por debajo del Pentium II, pero por encima del Pentium MMX y del Pro. El K6 contó con una gama que va desde los 166 hasta los más de 500 Mhz y con el juego de instrucciones MMX, que ya se han convertido en estándares.
Más adelante se lanzó una mejora de los K6, los K6-2 de 250 nanómetros, para seguir compitiendo con los Pentium II, siendo éste último superior en tareas de coma flotante, pero inferior en tareas de uso general. Se introduce un juego de instrucciones SIMD denominado 3DNow!


1997: El Intel Pentium II
Un procesador de 7,5 millones de transistores, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, revisar y compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica; el enviar vídeo a través de las líneas normales del teléfono mediante Internet se convierte en algo cotidiano.


1998: El Intel Pentium II Xeon
Los procesadores Pentium II Xeon se diseñan para cumplir con los requisitos de desempeño en computadoras de medio-rango, servidores más potentes y estaciones de trabajo (workstations). Consistente con la estrategia de Intel para diseñar productos de procesadores con el objetivo de llenar segmentos de los mercados específicos, el procesador Pentium II Xeon ofrece innovaciones técnicas diseñadas para las estaciones de trabajo y servidores que utilizan aplicaciones comerciales exigentes, como servicios de Internet, almacenamiento de datos corporativos, creaciones digitales y otros. Pueden configurarse sistemas basados en este procesador para integrar de cuatro o ocho procesadores trabajando en paralelo, también más allá de esa cantidad.

1999: El Intel Celeron
Continuando la estrategia, Intel, en el desarrollo de procesadores para los segmentos del mercado específicos, el procesador Celeron es el nombre que lleva la línea de de bajo costo de Intel. El objetivo fue poder, mediante ésta segunda marca, penetrar en los mercados impedidos a los Pentium, de mayor rendimiento y precio. Se diseña para el añadir valor al segmento del mercado de los PC. Proporcionó a los consumidores una gran actuación a un bajo coste, y entregó un desempeño destacado para usos como juegos y el software educativo.


1999: El AMD Athlon K7 (Classic y Thunderbird)
Procesador totalmente compatible con la arquitectura x86. Internamente el Athlon es un rediseño de su antecesor, pero se le mejoró substancialmente el sistema de coma flotante (ahora con 3 unidades de coma flotante que pueden trabajar simultáneamente) y se le incrementó la memoria caché de primer nivel (L1) a 128 KiB (64 KiB para datos y 64 KiB para instrucciones). Además incluye 512 KiB de caché de segundo nivel (L2). El resultado fue el procesador x86 más potente del momento.
El procesador Athlon con núcleo Thunderbird apareció como la evolución del Athlon Classic. Al igual que su predecesor, también se basa en la arquitectura x86 y usa el bus EV6. El proceso de fabricación usado para todos estos microprocesadores es de 180 nanómetros. El Athlon Thunderbird consolidó a AMD como la segunda mayor compañía de fabricación de microprocesadores, ya que gracias a su excelente rendimiento (superando siempre al Pentium III y a los primeros Pentium IV de Intel a la misma frecuencia de reloj) y bajo precio, la hicieron muy popular tanto entre los entendidos como en los iniciados en la informática.

1999: El Intel Pentium III
El procesador Pentium III ofrece 70 nuevas instrucciones Internet Streaming, las extensiones de SIMD que refuerzan dramáticamente el desempeño con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, video y desempeño en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del desempeño en el Internet, le permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (con muchos gráficos), tiendas virtuales y transmitir archivos video de alta calidad. El procesador se integra con 9,5 millones de transistores, y se introdujo usando en él tecnología 250 nanómetros.


1999: El Intel Pentium III Xeon
El procesador Pentium III Xeon amplia las fortalezas de Intel en cuanto a las estaciones de trabajo (workstation) y segmentos de mercado de servidores, y añade una actuación mejorada en las aplicaciones del comercio electrónico e informática comercial avanzada. Los procesadores incorporan mejoras que refuerzan el procesamiento multimedia, particularmente las aplicaciones de vídeo. La tecnología del procesador III Xeon acelera la transmisión de información a través del bus del sistema al procesador, mejorando el desempeño significativamente. Se diseña pensando principalmente en los sistemas con configuraciones de multiprocesador.


2000: EL Intel Pentium 4
Este es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primero con un diseño completamente nuevo desde el Pentium Pro. Se estrenó la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6. Intel sacrificó el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE.

2001: El AMD Athlon XP
Cuando Intel sacó el Pentium 4 a 1,7 GHz en abril de 2001 se vio que el Athlon Thunderbird no estaba a su nivel. Además no era práctico para el overclocking, entonces para seguir estando a la cabeza en cuanto a rendimiento de los procesadores x86, AMD tuvo que diseñar un nuevo núcleo, y sacó el Athlon XP. Este compatibilizaba las instrucciones SSE y las 3DNow! Entre las mejoras respecto al Thunderbird se puede mencionar la prerrecuperación de datos por hardware, conocida en inglés como prefetch, y el aumento de las entradas TLB, de 24 a 32.


2004: El Intel Pentium 4 (Prescott)
A principios de febrero de 2004, Intel introdujo una nueva versión de Pentium 4 denominada 'Prescott'. Primero se utilizó en su manufactura un proceso de fabricación de 90 nm y luego se cambió a 65nm. Su diferencia con los anteriores es que éstos poseen 1 MiB o 2 MiB de caché L2 y 16 KiB de caché L1 (el doble que los Northwood), prevención de ejecución, SpeedStep, C1E State, un HyperThreading mejorado, instrucciones SSE3, manejo de instrucciones AMD64, de 64 bits creadas por AMD, pero denominadas EM64T por Intel, sin embargo por graves problemas de temperatura y consumo, resultaron un fracaso frente a los Athlon 64.

2004: El AMD Athlon 64
El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y que el Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits.El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet,: cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, baja la velocidad del mismo y su tensión se reduce.


2006: EL Intel Core Duo
Intel lanzó ésta gama de procesadores de doble núcleo y CPUs 2x2 MCM (módulo Multi-Chip) de cuatro núcleos con el conjunto de instrucciones x86-64, basado en el la nueva arquitectura Core de Intel. La microarquitectura Core regresó a velocidades de CPU bajas y mejoró el uso del procesador de ambos ciclos de velocidad y energía comparados con anteriores NetBurst de los CPU Pentium 4/D2. La microarquitectura Core provee etapas de decodificación, unidades de ejecución, caché y buses más eficientes, reduciendo el consumo de energía de CPU Core 2, mientras se incrementa la capacidad de procesamiento. Los CPU de Intel han variado muy bruscamente en consumo de energía de acuerdo a velocidad de procesador, arquitectura y procesos de semiconductor, mostrado en las tablas de disipación de energía del CPU. Esta gama de procesadores fueron fabricados de 65 a 45 nanómetros.


2007: El AMD Phenom
Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65 nanómetros lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45 nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la virtualización, generando un óptimo rendimiento por vatio. Todas las CPU Phenom poseen características tales como controlador de memoria DDR2 integrado, tecnología HyperTransport y unidades de coma flotante de 128 bits, para incrementar la velocidad y el rendimiento de los cálculos de coma flotante. La arquitectura Direct Connect asegura que los cuatro núcleos tengan un óptimo acceso al controlador integrado de memoria, logrando un ancho de banda de 16 Gb/s para intercomunicación de los núcleos del microprocesador y la tecnología HyperTransport, de manera que las escalas de rendimiento mejoren con el número de núcleos. Tiene caché L3 compartida para un acceso más rápido a los datos (y así no depende tanto del tiempo de latencia de la RAM), además de compatibilidad de infraestructura de los zócalos AM2, AM2+ y AM3 para permitir un camino de actualización sin sobresaltos. A pesar de todo, no llegaron a igualar el rendimiento de la serie Core 2 Duo.


2008: El Intel Core Nehalem
Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (zócalo 1366), y sustituido a su vez en i7, i5 e i3 (zócalo 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente. Memoria de tres canales (ancho de datos de 192 bits): cada canal puede soportar una o dos memorias DIMM DDR3. Las placa base compatibles con Core i7 tienen cuatro (3+1) o seis ranuras DIMM en lugar de dos o cuatro, y las DIMMs deben ser instaladas en grupos de tres, no dos. El Hyperthreading fue reimplementado creando núcleos lógicos. Está fabricado a arquitecturas de 45 nm y 32 nm y posee 731 millones de transistores su versión más potente. Se volvió a usar frecuencias altas, aunque a contrapartida los consumos se dispararon.

2008: Los AMD Phenom II y Athlon II
Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45 nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65 nm a los 45 nm, es que permitió aumentar la cantidad de cache L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2 MiB del Phenom original a 6 MiB.
Entre ellos, el Amd Phenom II X2 BE 555 de doble núcleo surge como el procesador binúcleo del mercado. También se lanzan tres Athlon II con sólo Cache L2, pero con buena relación precio/rendimiento. El Amd Athlon II X4 630 corre a 2,8 GHz. El Amd Athlon II X4 635 continua la misma línea.
AMD también lanza un triple núcleo, llamado Athlon II X3 440, así como un doble núcleo Athlon II X2 255. También sale el Phenom X4 995, de cuatro núcleos, que corre a más de 3,2GHz. También AMD lanza la familia Thurban con 6 núcleos físicos dentro del encapsulado


2011: El Intel Core Sandy Bridge
Llegan para remplazar los chips Nehalem, con Intel Core i3, Intel Core i5 e Intel Core i7 serie 2000 y Pentium G.
Intel lanzó sus procesadores que se conocen con el nombre en clave Sandy Bridge. Estos procesadores Intel Core que no tienen sustanciales cambios en arquitectura respecto a nehalem, pero si los necesarios para hacerlos más eficientes y rápidos que los modelos anteriores. Es la segunda generación de los Intel Core con nuevas instrucciones de 256 bits, duplicando el rendimiento, mejorando el desempeño en 3D y todo lo que se relacione con operación en multimedia. Llegaron la primera semana de Enero del 2011. Incluye nuevo conjunto de instrucciones denominado AVX y una GPU integrada de hasta 12 unidades de ejecución
Ivy Bridge es la mejora de sandy bridge a 22 nm. Se estima su llegada para 2012 y promete una mejora de la GPU, así como procesadores de sexdécuple núcleo en gamas más altas y cuádruple núcleo en las más bajas, abandonándose los procesadores de núcleo doble.


2011: El AMD Fusion
AMD Fusion es el nombre clave para un diseño futuro de microprocesadores Turion, producto de la fusión entre AMD y ATI, combinando con la ejecución general del procesador, el proceso de la geometría 3D y otras funciones de GPUs actuales. La GPU (procesador gráfico) estará integrada en el propio microprocesador. Se espera la salida progresiva de esta tecnología a lo largo del 2011; estando disponibles los primeros modelos (Ontaro y Zacate) para ordenadores de bajo consumo entre últimos meses de 2010 y primeros de 2011, dejando el legado de las gamas medias y altas (Llano, Brazos y Bulldozer para mediados o finales del 2011).



Volver a PARTES DE UN PC  o a ÍNDICE



3. ARQUITECTURA.

En un microprocesador se puede diferenciar diversas partes:
Encapsulado: es lo que rodea a la oblea de silicio en sí, para darle consistencia, impedir su deterioro (por ejemplo, por oxidación por el aire) y permitir el enlace con los conectores externos que lo acoplaran a su zócalo a su placa base.

Memoria cache: es una memoria ultrarrápida que emplea el micro para tener a alcance directo ciertos datos que «predeciblemente» serán utilizados en las siguientes operaciones, sin tener que acudir a la memoria RAM, reduciendo así el tiempo de espera para adquisición de datos. Todos los micros compatibles con PC poseen la llamada cache interna de primer nivel o L1; es decir, la que está dentro del micro, encapsulada junto a él. Los micros más modernos (Pentium III Coppermine, Athlon Thunderbird, etc.) incluyen también en su interior otro nivel de caché, más grande, aunque algo menos rápida, es la caché de segundo nivel o L2 e incluso los hay con memoria caché de nivel 3, o L3.

Unidad de coma flotante: (adaptación del inglés floating-point unit o literalmente traducido unidad de punto flotante) o, también conocido como coprocesador matemático. Es la parte del micro especializada en esa clase de cálculos matemáticos, antiguamente estaba en el exterior del procesador en otro chip. Esta parte está considerada como una parte «lógica» junto con los registros, la unidad de control, memoria y bus de datos.

Registros: son básicamente un tipo de memoria pequeña con fines especiales que el micro tiene disponible para algunos usos particulares. Hay varios grupos de registros en cada procesador. Un grupo de registros está diseñado para control del programador y hay otros que no son diseñados para ser controlados por el procesador pero que la CPU los utiliza en algunas operaciones, en total son treinta y dos registros.

Memoria: es el lugar donde el procesador encuentra las instrucciones de los programas y sus datos. Tanto los datos como las instrucciones están almacenados en memoria, y el procesador las accede desde allí. La memoria es una parte interna de la computadora y su función esencial es proporcionar un espacio de almacenamiento para el trabajo en curso.

Puertos: es la manera en que el procesador se comunica con el mundo externo. Un puerto es análogo a una línea de teléfono. Cualquier parte de la circuitería de la computadora con la cual el procesador necesita comunicarse, tiene asignado un «número de puerto» que el procesador utiliza como si fuera un número de teléfono para llamar circuitos o a partes especiales.

Frecuencia de reloj: Indica la velocidad a la que un procesador realiza las operaciones más básicas, como sumar dos números o transferir el valor de un registro a otro. Se mide en ciclos por segundo (hercios).

Frecuencia de bus: Es la frecuencia con la cual el procesador transfiere los datos al resto del equipo.

Número de núcleos: Cada núcleo es un “procesador” dentro del procesador. Todos los núcleos de un procesador trabajan coordinadamente repartiéndose las tareas.

Consumo energético máximo: Es la potencia máxima que consume el procesador para poder cumplir todas las órdenes que se le han pedido.

Voltaje de núcleo: Es el voltaje de alimentación suministrado al procesador u otro dispositivo que contiene un núcleo de procesamiento. Dependiendo del voltaje en el que trabaje disipará más o menos calor.
Volver a PARTES DE UN PC  o a ÍNDICE




4. DIVISIÓN INTERNA (ALU Y UNIDAD DE CONTROL).

Internamente un microprocesador cuenta con 2 partes muy esenciales:
  • ALU: significa ("Aritmetic - Logic Unit") que traducido es unidad aritmética y lógica. Esta se encarga de realizar todas aquellas operaciones necesarias como cálculos de operaciones (multiplicaciones, divisiones, sumas, etc.) y comparaciones entre valores (mayor que, menor que, igual que, etc.).
  • Unidad de Control: esta se encarga de organizar y manejar todos los procesos tales como interpretar contenidos de las posiciones de la memoria RAM y memoria ROM, control de puertos, acceso a unidades de disco, ejecución de las instrucciones del software, entre otras.
Volver a PARTES DE UN PC  o a ÍNDICE




5. DEFINICIÓN DE CPU, GPU Y VPU.
Las tres siglas hacen referencia al microprocesador, sin embargo cada una se utiliza en actividades distintas:

Qué significa CPU: es ("Central Process Unity") ó unidad central de proceso, siendo el microprocesador principal que utiliza la computadora en su conjunto para el proceso de datos en general.

Qué significa GPU y que significa VPU: significan ("Graphic Process Unity") ó unidad de proceso de gráfico / ("Video Process Unity") ó unidad de proceso de video respectivamente. Ambas siglas se refieren a un mismo procesador independiente del principal; que se encarga específicamente del proceso de video y gráficos, y así libera de esta carga de trabajo al CPU. El procesador de gráficos puede estar integrado en la tarjeta principal, en una tarjeta aceleradora de gráficos ó en la estructura del mismo procesador principal.
Volver a PARTES DE UN PC  o a ÍNDICE




6. DISIPADOR Y VENTILADOR, PARTES FÍSICAS EXTERNAS QUE LO COMPONEN.
El microprocesador en sí es un chip, que tiene una base que integra conectores tipo pin ó solamente contactos planos. Por el mismo avance en las velocidades de los microprocesadores, actualmente necesitan otros dispositivos de apoyo que son los disipadores de calor y los ventiladores, ya que en caso de faltar estos, el microprocesador envía una señal para que el equipo se apague repentinamente y así evitar que se queme.

El disipador: es una pieza metálica con formas variadas; este se encarga de absorber el calor generado por el ventilador y disiparlo al ambiente. Es importante mencionar que entre el procesador y el disipador se debe colocar un silicón especial, que transfiere de manera más eficiente el calor entre las 2 piezas, además de evitar el contacto directo entre las 2 piezas calientes.

El ventilador: se encarga de aplicar aire fresco al disipador y enfriarlo, permitiendo que absorba más calor proveniente del microprocesador.
 Ejemplo de disipador de calor con su respectivo ventilador. Este se coloca sobre el microprocesador que se pretende enfriar.

Como ventilar correctamente el procesador: Básicamente son dos maneras de ventilar el procesador:
1.- Consiste en que el ventilador dirija el aire directamente al disipador del procesador, esto siempre y cuando el gabinete cuente con un cono de ventilación ó una ventila lateral.
2.- Se trata de que el ventilador expulse el aire del disipador, esto cuándo se carezca de ventilación lateral.
Ventilación correcta del CPU.

Volver a PARTES DE UN PC  o a ÍNDICE




7. MARCAS Y MODELOS DE MICROPROCESADORES.
Al adquirir un microprocesador, este se ofrece con ciertas características que lo definen; entre ellas están las siguientes:
La marca: esta puede ser alguna de las 3 líderes:    
     1.- Intel®: Significa ("INT egrated EL ectronics"), que significa electrónicos integrados. Esta empresa se forma en el año de 1968 en el Sillicon Valley de California en EUA, actualmente desarrolla también tecnologías propietarias para tarjetas de video y Main Board.
Es el mayor fabricante de circuitos integrados del mundo, según su cifra de negocio anual. La compañía es la creadora de la serie de procesadores x86, los procesadores más comúnmente encontrados en la mayoría de las computadoras personales.
Logo de la empresa Intel®

     2.- AMD®: Significa ("American Micro Devices"), que traducido significa micro dispositivos Americanos. Es una empresa integrada en el año de 1976, dedicada inicialmente a fabricar microprocesadores idénticos a los de la empresa Intel®, pero esta última patentó sus productos, por lo que AMD® comenzó a diseñar los propios con muy excelentes resultados, actualmente desarrolla también tecnologías propietarias para tarjetas de video.
Es el segundo proveedor de microprocesadores basados en la arquitectura x86 y también uno de los más grandes fabricantes de unidades de procesamiento gráfico. Sus productos principales incluyen microprocesadores, placas base, circuitos integrados auxiliares, procesadores embebidos y procesadores gráficos para servidores, estaciones de trabajo, computadores personales, y aplicaciones para sistemas embedidos.      
   Logo de la empresa AMD®

     3.- Cyrix®: Esta marca dominaba en tercer lugar las ventas, pero actualmente se ha quedado muy relegada por la popularidad que adquirió AMD®; así que fue absorbida por la empresa Via Technologies®. Actualmente hay una línea moderna de productos de esta marca que poco a poco se intenta colocar en el mercado de las Desktop y de las Netbook.
 Logo de la empresa Via® Tecnologies

El modelo: es la subdivisión de los microprocesadores. Los modelos regularmente se referirán a una versión completa del producto ó a otra más austera. La austera se refiere a que contiene menor cantidad de memoria caché L2 integrada dentro del circuito, por lo que es más lento en acceder a ciertos datos e instrucciones.
1.- Para la marca AMD®: podemos encontrar principalmente el modelo Athlon y Phenom, mientras que las versiones austeras son Duron y Sempron.
Ejemplo de ello:
·        Modelo austero: microprocesador AMD® Sempron, modelo LE-1250, velocidad de 2.2 GHz, memoria caché de 512 KB, para Socket 940 AM2.
·        Modelo completo: microprocesador AMD® Phenom, modelo 9850 X4, velocidad de 2.5 GHz, memoria caché de 4 MB L2 y L3, para socket AM2.
2.- Para la marca Intel®: los modelos completos son Pentium y las versiones austeras son Celeron.
Ejemplo de ello:
·        Modelo austero: microprocesador Intel® Celeron D, modelo Dual Core, velocidad de 1.6 GHz, memoria caché de 512 KB, FSB de 800 MHz, para Socket 775.
·        Modelo completo: microprocesador Intel® Pentium 4, modelo E 6750, velocidad de 2.66 GHz, memoria caché de 4 MB, FSB de 1333 MHz, para socket 775.






Como entender la nomenclatura de los procesadores
Intel y AMD adoptan una determinada nomenclatura para otorgarle información al consumidor a partir del nombre del procesador. Aparentemente la nomenclatura de esos procesadores es un tanto confusa:
INTEL
  • Quad Core (que posee 4 núcleos) comienza con la letra Q, de Quad. Por ejemplo: Q9550, Q8400s, Q9300.
  • Dual Core (que posee 2 núcleos) comienza con la letra Y. Por ejemplo: Y7500, Y6750.
  • Core i3: Procesadores de desempeño básico.
  • Core i5: Procesadores de desempeño intermedio.
  • Core i7: Procesadores de alto desempeño (y alto costo).
  • Atom significa que fue hecho para netbooks ( EeePCs ).
  • Xeon, significa que fue hecho para servidores.
  • Celeron significa que este es un procesador de bajo desempeño y bajo costo, normalmente forman parte de las computadoras más económicas.
AMD
  • El procesador que termina con X2, X3 y X4 posee 2, 3 y 4 núcleos, respectivamente. Por ejemplo: Athlon 64 X2 4400.
  • Al lado del nombre existe una numeración. Esa numeración no significa la frecuencia (o velocidad) del procesador, sólo indica el modelo.
  • Las versiones FX al final del nombre tienen el multiplicador liberado, siendo ideales para overclock.
  • Sempron, se trata de un procesador ultra básico. Con memoria cache y single core (único núcleo).
  • Phenom y el Phenom II (el II es el mejor) y son procesadores de alto desempeño.
  • Los Turion fueron hechos exclusivamente para notebooks.
  • Opteron es un procesador hecho para servidores, así como el Xeon de Intel.
Cuáles son los mejores procesadores de cada fabricante?
Y8400, Y8500, Y8600     Cual el mejor?     El que posee el mayor número.
Phenom II X4 920 y Phenom II X4 955.     Cual es el mejor?     El de mayor número.
   Volver a PARTES DE UN PC  o a ÍNDICE




8. CONEXIÓN CON EL EXTERIOR.
El microprocesador posee un arreglo de elementos metálicos que permiten la conexión eléctrica entre el circuito integrado que conforma el microprocesador y los circuitos de la placa base. Dependiendo de la complejidad y de la potencia, un procesador puede tener desde 8 hasta más de 2000 elementos metálicos en la superficie de su empaque. El montaje del procesador se realiza con la ayuda de un zócalo de CPU soldado sobre la placa base. Generalmente distinguimos tres tipos de conexión:
·   PGA: Pin Grid Array: La conexión se realiza mediante pequeños alambres metálicos repartidos a lo largo de la base del procesador introduciéndose en la placa base mediante unos pequeños agujeros, al introducir el procesador, una palanca anclará los pines para que haga buen contacto y no se suelten.


·       BGA: Ball Grid Array: La conexión se realiza mediante bolas soldadas al procesador que hacen contacto con el zócalo




·        LGA: Land Grid Array: La conexión se realiza mediante superficies de contacto lisas con pequeños pines que incluye la placa base.
Entre las conexiones eléctricas están las de alimentación eléctrica de los circuitos dentro del empaque, las señales de reloj, señales relacionadas con datos, direcciones y control; estas funciones están distribuidas en un esquema asociado al zócalo, de manera que varias referencias de procesador y placas base son compatibles entre ellos, permitiendo distintas configuraciones.
Volver a PARTES DE UN PC  o a ÍNDICE



9. CÓMO SE CREA UN PROCESADOR.
Con mucha dificultad. Para traer al mundo micros en cantidades industriales es necesario levantar factorías que suponen una inversión multimillonaria. Por ejemplo, una factoría que levantó hace no mucho Advanced Micro Devices (AMD) en Dresde, Alemania, costó unos 3.000 millones de euros.
La principal característica de estas fábricas es que son inmaculadamente limpias, ya que una simple mota de polvo podría echar a perder millares de microprocesadores. Para evitarlo cuentan con sistemas de filtración que renuevan el aire diez veces por minuto. Es decir, son 10.000 veces más limpias que un quirófano. Sus trabajadores van completamente forrados con un traje estéril que una persona poco familiarizada tardaría más de media hora en ponerse.
Traer al mundo un procesador es sumamente complejo, pero resumiéndolo mucho podríamos decir que se elaboran de la siguiente manera:



Exposición. Se expone un capa de dióxido de silicio al calor y a determinados gases para lograr que crezca y obtener una lámina u oblea de silicio tan fina que es imperceptible al ojo humano.

Fotolitografía. Se aplica luz ultravioleta sobre la oblea a través de una plantilla. El dibujo de dióxido de silicio resultante se fija con productos químicos. Un procesador consta de varias de estas capas, cada una con una plantilla distinta y cada una más fina que la anterior.

Implantación de iones. La oblea es bombardeada con iones para alterar la forma en la que el silicio conduce la electricidad en esas zonas.

División. En cada oblea se han creado miles de micros. Una vez el trazado de su circuito ha sido comprobado, se cortan individualmente con una sierra de diamante.

Empaquetado. La parte más fácil. Cada micro se inserta en el paquete protector que le da la apariencia que todos conocemos y que le permitirá ser conectado a otros dispositivos.
Volver a PARTES DE UN PC  o a ÍNDICE




10. LA MEMORIA CACHÉ L1, L2 Y L3.
Caché: es una memoria tipo SRAM, basada en transistores y por ello es muy veloz. Es intermedia entre el microprocesador y la memoria RAM, esta memoria guarda los datos utilizados frecuentemente y evita volver a buscarlos en la memoria RAM ya que está es relativamente lenta, por lo que se agilizan los procesos. Su unidad de medida es en Megabytes (MB).
En el caso de los microprocesadores, estos integran de 1 a 3 tipos de memoria caché denominadas L1, L2 y L3, que significan ("Level X") ó traducido es nivel 1, nivel 2 y nivel 3.
·      Memoria L1: se encuentra integrada dentro de los circuitos del microprocesador y eso la hace más cara y más complicado en el diseño, pero también mucho más eficiente por su cercanía al microprocesador, ya que funciona a la misma velocidad que él. Esta a su vez se subdivide en 2 partes.
- L1 DC: ("Level 1 date cache"): se encarga de almacenar datos usados frecuentemente y cuando sea necesario volver a utilizarlos, inmediatamente los utiliza, por lo que se agilizan los procesos.
- L1 IC: ("Level 1 instruction cache"): se encarga de almacenar instrucciones usadas frecuentemente y cuando sea necesario volver a utilizarlas, inmediatamente las recupera, por lo que se agilizan los procesos.
·     Memoria L2: esta anteriormente se encontraba en tarjetas de memoria, para ser insertada en una ranura especial de la tarjeta principal (Motherboard) y funciona a la velocidad de trabajo de la misma. Actualmente la memoria L2 viene integrada en el microprocesador, se encarga de almacenar datos de uso frecuente y agilizar los procesos; determina por mucho si un microprocesador es la versión completa ó un modelo austero. Pueden contar con una capacidad de almacenamiento Caché de 8 MB, 9 MB en procesadores AMD® e Intel® y hasta 12 MB en procesadores Intel®.

·        Memoria L3: esta memoria es un tercer nivel que utilizaron primero los procesadores de la firma AMD® y posteriormente Intel®. Con este nivel de memoria se agiliza el acceso a datos e instrucciones que no fueron localizadas en L1 ó L2. Si no se encuentra el dato en ninguna de las 3, entonces se accederá a buscarlo en la memoria RAM. Pueden contar con una capacidad de almacenamiento Caché de hasta 8 Mb y 9 Mb sumando L2+L3 en el caso de la nomenclatura AMD®.
Volver a PARTES DE UN PC  o a ÍNDICE


11. MICROPROCESADORES MULTICORE Ó PROCESADORES DE VARIOS NÚCLEOS.
Al llegar al límite de los 4 Ghz, los procesadores tienden a generar demasiado calor, de tal forma que no es posible enfriarlos de manera tradicional y ello conlleva a uso de sistemas más complejos de ventilación que aumentarían el costo de los equipos, haciéndose poco rentables, entre otros factores. La tendencia ha sido la de integrar en un solo microprocesador, varios núcleos (Cores), capaces de procesar paralelamente los datos, sin aumentar la velocidad de proceso, pero haciendo más eficiente el mismo, además de reducir de manera considerable el calor producido, ya que cada uno lleva procesos diferentes y no los concentran en un sólo núcleo.
a) Un núcleo (MonoCore): 1 núcleo (X1).
b) Dos ó más núcleos (Multicore): 2 núcleos (Core Duo/Dual Core/X2), 3 núcleos (TriCore/X3), 4 núcleos (Quad Core/X4) y hasta 6 núcleos (X6), en los actuales procesadores.
Ejemplo: Microprocesador marca AMD®, modelo Phenom 21090T X6*, frecuencia 3.2 GHz, L2+L3 9 MB, para socket AM3. (*Indica la presencia de 6 núcleos).

Volver a PARTES DE UN PC  o a ÍNDICE




12. PROCESADORES DE 48 NÚCLEOS.
Los procesadores de 48 núcleos son fruto de un programa de investigación de Intel Labs Tera-Scale Computer, que dio comienzo en 2006.
Este microprocesador está compuesto por una matriz de 48 núcleos agrupados en 24 celdas de núcleos dobles, que incluyen la memoria caché, buffer de comunicación, y router.
El SCC integra 1.300 millones de transistores y cuatro controladores de memoria DDR3. Han sido fabricados utilizando procesos de 45 nanómetros, cuentan con 384 KB de memoria caché, y un ancho de banda de hasta 256 GB.
Este diseño permitirá integrar en breve más de 100 núcleos, aunque sobre este número de núcleos ya se encuentra trabajando Tilera, quien anunció el pasado mes de octubre un chip de 100 núcleos fabricado utilizando tecnología de 40 nanómetros.
Volver a PARTES DE UN PC  o a ÍNDICE





13. EL OVERCLOCKING EN LOS MICROPROCESADORES.
Traducido significaría incremento al reloj. Es una característica con la que por medio del software del BIOS ó conectando ciertos  puntos de la placa base, entre otras técnicas, se puede lograr que el microprocesador trabaje a velocidades aún mayores de las que especifica el fabricante. Lo más recomendable es hacerlo por el software integrado en el BIOS, ya que viene respaldado por las características de la tarjeta principal. En caso de no funcionar, simplemente se vuelve a configurar al estado original sin mayor problema.
Esta técnica es utilizada en muchos casos por los vendedores para vender los microprocesadores como un producto con mayor velocidad, sin embargo, también algunos usuarios experimentados lo utilizan para que sus equipos de cómputo soporten algunas aplicaciones como juegos, proyectos 3D, etc., que requieren mayores prestaciones.
Volver a PARTES DE UN PC  o a ÍNDICE



14. EL "FRONTAL SIDE BUS" (FSB).
Tecnología FSB: ("Frontal Side Bus") que significa transporte frontal interno, que para el caso de los microprocesadores se refiere a la velocidad máxima con la que es capaz de transmitir datos con la placa base y el sistema en general.
El FSB en términos físicos se trata de una serie de líneas eléctricas interconectadas de modo paralelo, implementado por la marca Intel®; actualmente todos los dispositivos tienden a utilizar el modo serial, por lo que este tipo de tecnología genera cuellos de botella en los nuevos equipos de alta capacidad de proceso. Por este motivo la empresa AMD® desarrolló a partir de 2001 una nueva tecnología denominada HT "Hypertransport".
La unidad de medida para el FSB del microprocesador es el MegaHertz (MHz), actualmente las velocidades se encuentran entre los 800, 1066 y 1333 MHz.
Ejemplo de ello es:
·        Microprocesador Intel® Pentium 4, modelo E 6750, velocidad de 2.66 GHz, memoria caché de 4 MB, FSB de 1333 MHz, para socket 775. (Agosto de 2008).

Tecnología HT: ("HyperTransport") significa Hiper-transportación; se trata de una tecnología desarrollada por AMD® en 2001 en sustitución del FSB clásico, la cual implementa un bus serial con controlador de memorias independiente que permite la conexión directa con la memoria RAM sin necesidad del uso del NorthBridge de la placa base, es utilizado en microprocesadores basados en arquitectura de 64 bits.
Ejemplo de ello es:
·        Microprocesador marca AMD®, modelo Phenom 8450 X3, frecuencia 2.1 GHz, L2 3.5 MB, para socket AM2.

Tecnología QPI: ("QuickPath Interconnect") significa interconexión de ruta sencilla; se trata de tecnología desarrollada por Intel® en contraposición a la tecnología HT de AMD®, la cual consiste en un controlador de memoria que permite el control de memoria RAM directamente desde el microprocesador. La unidad de medida utilizada en esta nueva gama de productos es la unidad GT/s, lo cuál significa literalmente GigaTransferencias/segundo. Esta tecnología coexiste aún con FSB.
Ejemplo de ello es:
·        Microprocesador marca Intel®, modelo i7 920 Quad, frecuencia 2.66 GHz, 4.8 GT/s, caché 8 MB, para socket 1366.
Volver a PARTES DE UN PC  o a ÍNDICE



15. CREAN EL PRIMER MICROPROCESADOR ORGÁNICO Y FLEXIBLE.
Es fantástico cuando podemos apreciar la unión entre la ciencia y la tecnología para la producción de nuevos dispositivos ligados a la informática. De cara al futuro nos encontramos con que las principales innovaciones están en el ámbito de los componentes orgánicos, cuya principal característica es la flexibilidad.
Hace tiempo tuvimos la oportunidad de ver una nueva modalidad de pantalla que se destacaba por ser ciento por ciento flexible, pero ahora les ha llegado el momento a los procesadores. Un grupo de investigadores oriundos de Bélgica presentó el primer microprocesador que elimina la típica arquitectura rígida.
Este componente fue dado a conocer en la corriente edición de la Conferencia Internacional de Circuitos en Estado Sólido, y fue uno de los más aplaudidos. Se trata de una pieza de hardware creada en plástico e incluye moléculas de oxígeno, carbono e hidrógeno.
Según destacaron los creadores de este particular procesador, una de sus principales ventajas es que el costo de producción es mucho más barato que el de los componentes tradicionales. De todos modos, todavía falta bastante para que esta clase de hardware pueda implementarse comercialmente.
Este dispositivo cuenta con una potencia muy baja, y los ingenieros a cargo de su fabricación indicaron que sólo puede leer seis instrucciones por segundo. Esto es el equivalente a la potencia de un procesador de la década del 70.
Igualmente no deja de ser un avance muy importante de cara al futuro. Con el paso de los meses seguramente los creadores tendrán la capacidad de generar una potencia superior a través de estos semiconductores orgánicos.
Volver a PARTES DE UN PC  o a ÍNDICE


¿QUÉ PASA SI QUITAMOS EL DISIPADOR AL PROCESADOR?






INTEL 2011 CORE I7 990X BOX 


Numero de procesadori7-990X
Nucleos6
N de subprocesos12
Velocidad de reloj3.46 GHz
Frecuencia turbo maxima3.73 GHz
Intel Smart Cache12 MB
Ratio de bus por nucleo26
Velocidad Intel QPI6.4 GT/s
N de enlaces QPI1
Conjunto de instrucciones64-bit
Extensiones del conjunto de instruccionesSSE4.2
Opciones de integrados disponiblesNo
Litografia32 nm
TDP max.130 W
Rango de voltaje VID0.800V-1.375V
MEMORY SPECIFICATIONS
Tamaño de memoria max. (depende del tipo de memoria)24 GB
Tipos de memoriaDDR3-1066
N de canales de memoria3
Ancho de banda maximo de memoria25,6 GB/s
Extensiones de direccion fisica36-bit
Compatible con memoria ECCNo
GRAPHICS SPECIFICATIONS
Graficos integradosNo
PACKAGE SPECIFICATIONS
Configuracion maxima de CPU1
TCASE67.9C
Tamaño del paquete42.5mm X 45.0mm
Tamaño del chip de procesamiento239 mm2
Zocalos compatiblesFCLGA1366
Opciones de concentracion baja de halogenos disponibleSi
ADVANCED TECHNOLOGIES
Tecnologia Intel Turbo BoostSi
Tecnologia Intel Hyper-ThreadingSi
Intel Virtualization Technology (VT-x)Si
Tecnologia de ejecucion de confianza Intel (Intel TXT)No
Nuevas instrucciones AESSi
Intel 64Si
Estados inactivosSi
Tecnologia Intel SpeedStep mejoradaSi
Conmutacion segun demanda IntelNo
Tecnologias de monitorizacion termicaNo
Bit de desactivacion de ejecucionSi







0 comentarios:

Publicar un comentario